David Ifeoluwa Adelani, Marek Masiak, Israel Abebe Azime, Jesujoba Oluwadara Alabi, A. Tonja, Christine Mwase, Odunayo Ogundepo, Bonaventure F. P. Dossou, Akintunde Oladipo, Doreen Nixdorf, Chris C. Emezue, S. Al-Azzawi, Blessing K. Sibanda, Davis David, Lolwethu Ndolela, Jonathan Mukiibi, T. Ajayi, Tatiana Moteu Ngoli, B. Odhiambo, A. Owodunni, Nnaemeka Obiefuna, Shamsuddeen Hassan Muhammad, S. S. Abdullahi, M. Yigezu, T. Gwadabe, Idris Abdulmumin, Mahlet Taye Bame, Oluwabusayo Olufunke Awoyomi, Iyanuoluwa Shode, T. Adelani, Habiba Abdulganiy Kailani, Abdul-Hakeem Omotayo, Adetola Adeeko, Afolabi Abeeb, Anuoluwapo Aremu, Olanrewaju Samuel, Clemencia Siro, Wangari Kimotho, Onyekachi Raphael Ogbu, C. Mbonu, C. Chukwuneke, Samuel Fanijo, Jessica Ojo, Oyinkansola F. Awosan, Tadesse Kebede Guge, Sakayo Toadoum Sari, Pamela Nyatsine, Freedmore Sidume, Oreen Yousuf, Mardiyyah Oduwole, Ussen Kimanuka, Kanda Patrick Tshinu, Thina Diko, Siyanda Nxakama, Abdulmejid Tuni Johar, Sinodos Gebre, Muhidin A. Mohamed, Shafie Abdi Mohamed, Fuad Mire Hassan, Moges Ahmed Mehamed, Evrard Ngabire, Pontus Stenetorp

IJCNLP

Abstract

African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS – a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.